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ABSTRACT 
 
 

Recent advancement in technology and rapid reduction in costs have led to the uses of Wireless 

Sensor Networks (WSNs) for applications with requirements significantly differing form 

traditional monitoring applications. Sensor nodes are now being increasingly used for real-time 

embedded applications having stringent QoS requirements in terms of timeliness and reliability. 

However, most of the current set of communication protocols use best effort service and do not 

provide any real-time guarantees on data delivery. Real-time communication and QoS support in 

WSN remains an open issue and are the focus of this work. 

Towards this end, IEEE 802.15.4/Zigbee protocols are considered among the most promising 

candidates and have been under recent investigations. However, the attempts to evaluate the 

protocols by implementing them over TinyOS, the most popular operating system for sensor 

nodes, encountered several problems, mainly  because of the limitations of the OS, namely lack 

of task pre-emption and prioritization. To provide a more reliable platform for a better evaluation 

of the protocol, we first implement the stack over ERIKA, a real-time operating system with 

support for task prioritization and priority based preemption. In order to support cluster-tree 

formation in synchronized mode, we additionally implemented a Time Division Beacon 

Scheduling mechanism.  

While IEEE 802.15.4 does provide options for guaranteed bandwidth by providing contention 

free time slots, its usefulness is severely restricted for large scale distributed applications with 

even distribution of critical message. For the rest of the period the protocol uses CSMA/CA 

algorithm for channel access, without any provisions of QoS support. In this dissertation we 

extend the QoS to Contention Access Period by introducing priority based service differentiation 

in CSMA/CA.  
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CHAPTER 1  
OVERVIEW             
 

1.1 Introduction 
A Wireless Sensor Network (WSN) consists of multiple battery-powered devices, equipped with 

one or several kinds of sensors, capable of wireless communication, data storage, and limited 

amount of computation. According to the traditional view of a WSN application, a large numbers 

of such randomly deployed devices would then collectively carry out sensing and computations 

and forward data to a sink.  Till recent years, most of the research in this area has been focused 

on issues relating to such applications, e.g. ad-hoc network formation, mobility, scalability, self 

organization, routing, energy efficiency. 

Recent advancements in technology (e.g. memories, energy scavenging, and hardware design) 

and rapid reduction in its cost have, however, pushed sensor networks towards an increased use 

in a much wider range of applications. Sensors are now closely integrated with real-world 

applications, and interact directly with the environment. Examples of such applications include 

home and building automation, industrial process control and automation, healthcare 

applications, disaster response and management and numerous other such real-time monitoring 

applications. These applications pose stricter timing and reliability requirements than traditional 

WSN applications (e.g. environmental monitoring, precision agriculture). This Thesis focuses on 

this set of applications, and it aims at providing the architectural means to support the QoS 

requirements (with respect to timing and reliability) of such time-critical WSN applications [1]. 

To satisfy these requirements, timing guarantees must be provided on computation, i.e., at node 

level, as well as in communication, i.e., at network level.  At node level, it comes down to the 

operating system and its scheduling policy, which should be able to produce predictable timing 

behavior of tasks. TinyOS [2], one of the most widely used operating system for sensor nodes, 

however, assumes a non-preemptive scheduling policy, thus providing no real-time guarantees 

on computation. Previous attempts to provide time-bounded communication relying on TinyOS 

have met with problems precisely because of this reason [3]. More recent operating systems, e.g 

Contiki [4], Nano-RK [5] and ERIKA [6] have been designed with real-time properties and are 

being widely considered especially in applications requiring real-time support. 
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Real-time support is also required on networking side, since most WSN applications are 

expected to involve a group of nodes communicating with each other. The protocol used must 

provide not only an efficient mechanism for sharing the channel but also some means of support 

for time-bounded communication. While various novel frameworks have been proposed [7-9] to 

achieve this, none have yet gained significant uses.  

IEEE 802.15.4 [10] and ZigBee [11], on the other hand, though originally designed for Low-Rate 

Wireless Personal Area Networks (LR-WPANs), are fairly established technologies and have 

shown excellent potentials to fit the requirements of time-critical WSN applications [12]. Efforts 

[13-14] have been made to evaluate the suitability of the protocol to meet sensor network 

requirements by implementing it over TinyOS. However, as mentioned before, difficulties arose 

because of the non real-time nature and lack of preemption of the operating system, causing the 

loss or delay of critical tasks under heavy duty cycles. 

The need for a stack implementation over a real-time operating system has thus been vindicated 

for a fair assessment of the adequateness of the protocol for WSNs [3]. This dissertation intends 

to fill this gap by providing an implementation of IEEE802.15.4/ZigBee protocol stack over 

ERIKA real-time operating system. It further addresses the issue of QoS enhancement for time-

critical messages using traffic differentiation strategies.   

1.2 Research Context 
This dissertational work lies within the context of the ART-WiSE (Architecture for Real-Time 

communications in Wireless Sensor Networks) research framework [15-16], aiming to specify a 

scalable two-tiered communication architecture for improving the timing and reliability behavior 

of WSNs. In this line, the work hereby presented has been carried out within a collaborative 

research between IPP-HURRAY group[17], based at School of Engineering (ISEP), Polytechnic 

Institute of Porto (IPP), Portugal and Real-Time Systems Laboratory[18], of Scuola Superiore 

Sant'Anna, Italy. 

1.3 Research Objectives 
The major objectives of this dissertation are: 
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1. To provide an ERIKA implementation of the IEEE 802.15.4 and a set of the ZigBee 

network layer services, in order to provide a reliable platform for the evaluation of the 

adequateness of the protocol for WSNs in the line of the ART-WiSe Framework. 

 
2. To implement and demonstrate a priority based QoS differentiation mechanism in the 

Contention Access Period (CAP) [10] of IEEE 802.15.4 protocol. 

1.4 Research Contributions 
The major contributions of this Thesis are: 

• Implementation and validation, of the following IEEE 802.15.4/ZigBee features in 

ERIKA[1]: 

o IEEE 802.15.4 

  Acknowledged and Indirect data Transmission mechanism  

 Guaranteed Time Slot(GTS) allocation and De-allocation mechanism;  

 Association and Addressing mechanisms 

o ZigBee Network Layer 

 Network formation 

 Tree routing and addressing mechanism 

• Implementation of a Time Division Beacon Scheduling Mechanism [19] to support 

cluster-tree operation in beacon enabled mode.  

• Implementation and validation of a traffic differentiation mechanism [20] in IEEE 

802.15.4 slotted CSMA/CA, providing multiple level QoS support in the CAP. 

• Design, implementation and validation of a Testbed to carry out the performance 

evaluation of the above mechanism. 

1.5 Organization of the Dissertation 
The rest of the thesis is organized as follows: 

Chapter 2 gives an overview of the IEEE 802.15.4 and ZigBee protocols. Chapter 3 discusses the 

hardware and software tools used in the development and analysis. Chapter 4 outlines the 

implementation of the protocol stack and the TDBS mechanism. Chapter 5 discusses the traffic 

differentiation mechanism, namely the implementation, evaluation and results obtained. Chapter 

6 concludes the Thesis. 
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CHAPTER 2 
IEEE 802.15.4 AND ZIGBEE: AN OVERVIEW 
 

This chapter provides a brief description of some of the important features of the IEEE 802.15.4 

and ZigBee protocols. It focuses on the IEEE 802.15.4 Data Link and ZigBee Network Layers, 

which are relevant in the context of this Thesis. 

2.1 Overview 
The IEEE 802.15.4 [10] and ZigBee [11] standards together complete the communication 

protocol stack for Low-Rate Wireless Personal Area Networks (LR-WPANs). The IEEE 

802.15.4 defines the Medium Access Control (MAC) and the Physical (PHY) layers while the 

ZigBee standard specifies the Network (NWL) and the Application (APL) layers. Figure 2.1 

shows the layered architecture of the complete stack. The following sections provide brief 

descriptions of both the standards. 

 

  Figure 2.1: The IEEE 802.15.4/ZigBee protocol stack architecture [11] 

 

2.2 IEEE 802.15.4 Physical and MAC Layers 
The IEEE 802.15.4 specification defines two different types of devices: the Full Function 

Devices (FFDs) that implement the full protocol stack and the Reduced Function Devices 

(RFDs) that implement a subset of the stack.  
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An FFD can assume one of the following three roles in the network: 

(1) The Personal Area Network (PAN) Coordinator: Controls the Personal Area 

Network (PAN), identifying the network and its configurations; 

(2) The Coordinator : Provides synchronization services by transmitting beacons; must   

associate to a PAN Coordinator and does not create its own network;  

(3) The End-Devices :  The leaves of the network; must  associate with a Coordinator but  

cannot associate other devices 

 

The RFDs implement only the minimal functionalities of the IEEE 802.15.4 and can only act as 

end devices. They are intended to support simple tasks, and usually do not have to send or 

process large amounts of data. One RFD can only associate with a single FFD at a time. 

2.2.1 Physical Layer 

The Physical Layer (PHY) provides two services: the PHY data service and PHY management 

service. The PHY data service enables the transmission and reception of PHY protocol data units 

(PPDU) across the physical radio channel. The management service provides the interfaces 

between the MAC and the PHY used for exchanging management information.  

 

There are three operational frequency bands (Figure 2.2): 2.4 GHz, 915 MHz and 868 MHz. 

There is 1 channel between 868 and 868.6 MHz, 10 channels between 902 and 928 MHz, and 16 

channels between 2.4 and 2.4835 GHz. Lower frequencies are more suitable for longer 

transmission ranges whereas higher frequency means higher throughput. 

 

 
Figure 2.2: Operating frequencies and bands [10] 



6 
 

 

 

According to the standard, the physical layer is responsible for the following tasks: 

• Activation and deactivation of the radio transceiver: turning the transceiver ON or OFF, 

on the request from higher layers. The turnaround time should be less than 12 symbol 

periods, where each symbol is made up of 4 bits. 

• Energy Detection (ED): the estimation of the received signal power in any particular 

channel.  

• Link Quality Indication (LQI): characterization of the strength of a received packet. It 

may be implemented using receiver ED, a signal-to-noise ratio estimation or a 

combination of both. 

• Clear Channel Assessment (CCA): the determination of the current state of the medium: 

busy or idle. It can be performed using Energy Detection, Carrier Sense or Carrier Sense 

with Energy Detection. CCA is used in CSMA/CA algorithm. 

• Channel Frequency Selection: the ability to tune the transceiver into one of the 27 

channels, as requested by a higher layer.  

2.2.2 MAC Layer 

The MAC protocol supports two operational modes (Figure 2.3): 

• Beacon-enabled mode: In this mode, beacons are periodically transmitted by the 

Coordinator to synchronize the nodes, and to identify the PAN. The part of the time 

frame between two consecutive beacons is called a superframe. Medium access is   

governed by slotted CSMA/CA mechanism in Contention Access Period (CAP) and 

Guaranteed Time Slot (GTS) mechanism in Contention Free Period (CFP). 

• Non-beacon-enabled mode: As suggested by the name, there are no beacons or 

superframes in non beacon-enabled mode. Medium access is governed by the unslotted 

CSMA/CA mechanism. 
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Figure 2.3: IEEE 802.15.4 Operational Modes 

Superframe Structure 

• In beacon-enabled mode the superframe is defined as the time period between any two 

beacon frames and has an active and an inactive period, as shown in figure 2.4. The 

active portion is divided into 16 time slots, and can be made of  the following three 

parts:Beacon: the beacon frame is transmitted at the start of slot 0. It contains the 

information on the addressing fields, the superframe specification, the GTS fields, the 

pending address fields and other PAN related information. 

• Contention Access Period (CAP): the CAP starts immediately after the beacon frame and 

ends before the beginning of the CFP. All transmissions during the CAP, with the 

exception of acknowledgement and indirect transmission, are made using the Slotted 

CSMA/CA. 

• Contention Free Period (CFP): The CFP starts immediately after the end of the CAP and 

ends at the end of the superframe. Transmissions are made by any device in the slot 

specifically allotted to it by the Coordinator, and hence are contention free. 

Allocations/deallocations are managed by the Coordinator. 

 

Construction of the superframe is determined by two parameters: the Beacon Order (BO) and the 

Superframe Order (SO). These in turn determine the Beacon Interval (BI) and Superframe 

Duration (SD). 
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Figure 2.4: IEEE 802.15.4 Superframe structure [10] 
 

The relationship between the two is given by the following two equations: 

140
2
2

≤≤≤
⎪⎭

⎪
⎬
⎫

×=

×=
BOSOfor

ionframeDurataBaseSuperSD
ionframeDurataBaseSuperBI

SO

BO

 (2.1) 

BI defines the time between two consecutive beacon frames whereas SD defines the active 

portion of the superframe, both in terms of aBaseSuperframeDuration, which is equal to 15.36 

ms (assuming 250 kbps in the 2.4 GHz frequency band), also equal to the minimum duration of 

the superframe (corresponding to SO=0). An inactive period can be configured by setting BO > 

SO, in which all nodes may enter the sleep mode. This is useful for WSNs, since energy 

efficiency is often a factor.  

Association Mechanisms 

To communicate in a PAN, a device must be associated with a Coordinator. The association 

procedure begins with the requesting device sending an association request command frame. The 

Coordinator on receiving the request decides on whether to admit the device and generates the 

association response frame. For successful association, the response frame contains the short 

address to be assigned to the device and the Coordinator adds the new device in its neighbor 

table. For unsuccessful associations the response frame contains the problem status information. 

The response frame transmission is indirect (figure 2.5), which means that when the Coordinator 

has the response frame ready for transmission, it puts the recipient’s address in the pending 

address field of the forthcoming beacon. The End device on receiving its address in the beacon 
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transmits a data request command frame, followed by the transmission of the association 

response by the coordinator. After a successful association, the associated device stores all the 

information about the new PAN by updating its MAC PAN Information Base (MAC PIB). The 

newly assigned short address is used for all future communication purposes. Figure 2.5 shows the 

message sequence chart for the association mechanism. 

 

Figure 2.5: Association message sequence chart [10] 

Guaranteed Time Slot (GTS) mechanism 

The GTS mechanism allows devices to operate in the medium without contention by having 

portions of the superframe dedicated to a particular device, in which no other devices can 

operate. Slots are allocated by the Coordinator and can be used only for communications with the 

Coordinator. Each GTS may contain one or more time slots and up to seven GTSs may be 

allocated in any superframe. Each GTS slot can have only one direction: either from the device 

to the Coordinator (transmit) or from the Coordinator to the device (receive). Figure 2.6  shows 

message sequence chart of GTS allocation procedure. 
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Figure 2.6: GTS allocation message sequence diagram [10]Error! Reference source not 

found. 

The Coordinator is responsible for performing the GTS management and can deallocate the 

allocated slots at any time on its own discretion. The device that originally requested the GTS 

allocation can also request for dellocation. For each GTS, the Coordinator stores the starting slot, 

length, direction, and associated device address. Only one transmit and/or one receive GTS are 

allowed for each device. Upon the reception of the deallocation request the Coordinator updates 

the GTS descriptor list by removing the previous allocated slot and rearranging the remaining 

allocation starting slots.  

The Coordinators monitor GTS activity and if there are no transmissions during a defined 

number of time slots the GTS allocation expires. The expiration occurs if no data or no 

acknowledgement frames are received by the device or by the Coordinator, on every 2*n 

superframes, where n is defined as: 

( )

⎩
⎨
⎧

≤≤=
≤≤= −

14rdermacBeaconO9if,1n
8rdermacBeaconO0if,2n rdermacBeaconO8

    (2.2) 

CSMA/CA Mechanism 

In IEEE 802.15.4, contention-based MAC access can be governed by slotted or unslotted 

CSMA/CA, depending on the network operation behaviour: beacon-enabled or non beacon-

enabled, respectively. The CSMA/CA mechanism is based on backoff periods (with the duration 

of 20 symbols). Three variables are used to schedule medium access:  
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− Number of Backoffs (NB), representing the number of failed attempts to access the 

medium;  

− Contention Window (CW), representing the number of backoff periods that must be 

clear before starting transmission;  

− Backoff Exponent (BE), enabling the computation of the number of wait backoffs 

before attempting to access the medium again. 

 

Figure 2.7 shows a flowchart describing the slotted version of the CSMA/CA mechanism. It can 

be summarized in five steps:  

1. Initialization of the algorithm variables: NB equal to 0; CW equals to 2 and BE is set to 

the minimum value between 2 and a MAC sub-layer constant (macMinBE);  

2. After locating a backoff boundary, the algorithm waits for a random defined number of 

backoff periods before attempting to access the medium;  

3. Clear Channel Assessment (CCA) to verify if the medium is idle or not. 

4. The CCA returned a busy channel, thus NB is incremented by 1 and the algorithm must 

start again in Step 2;  

5. The CCA returned an idle channel, CW is decremented by 1 and when it reaches 0 the 

message is transmitted, otherwise the algorithm jumps to Step 3. 

 

In the slotted CSMA/CA, when the battery life extension is set to 0, the CSMA/CA must ensure 

that, after the random backoff (step 2), the remaining operations can be undertaken and the frame 

can be transmitted before the end of the CAP. If the number of backoff periods is greater than the 

remaining in the CAP, the MAC sub-layer pause the backoff countdown at the end of the CAP 

and defers it to the start of the next superframe. If the number of backoff periods is less or equal 

than the remaining number of backoff periods in the CAP, the MAC sub-layer applies the 

backoff delay and re-evaluate whether it can proceed with the frame transmission. If the MAC 

sub-layer do not have enough time, it defers until the start of the next superframe, continuing 

with the two CCA evaluations (step 3). If the battery life extension is 1, the backoff countdown 

must only occur during the first six full backoff periods, after the reception of the beacon, as the 

frame transmission must start in one of these backoff periods. 
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Figure 2.7: The Slotted CSMA/CA mechanism [10] 
 

Transmission Scenarios 

The IEEE 802.15.4 standard enables three different types of transmissions: 

• Direct transmissions: frames are transmitted to the medium without any channel 

assessment. Used in the transmission of the beacon frames, the acknowledgment frames 

and the frames in the GTS time slots. 

• Indirect transmissions: the frames are stored in the Coordinator to which the destination 

device is associated. The information about the pending transmission is then added to the 

pending addresses field of the beacon frame. The device having pending data in the 

Coordinator can then request it by sending a data request command frame and the stored 

frame is transmitted by the Coordinator.  

• Normal transmissions: the frames are transmitted to the medium with contention, by 

applying the CSMA/CA algorithm. Applied to the data frames and command frames 

transmitted during the CAP. 
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2.3 ZigBee  

   2. 3.1 Topology and Device Types 

ZigBee defines 3 types of devices [11]: 

• ZigBee Coordinator (ZC): Each ZigBee Network has one ZC which initiates and 

configures network formation and also acts as an IEEE 802.15.4 Personal Area 

Network (PAN) Coordinator. It must be a  Full Functional Device (FFD)  

• ZigBee Router (ZR): ZR participates in multi-hop routing of messages in mesh and 

Cluster-Tree networks. It must associate with a ZC or with a previously associated 

ZR in Cluster-Tree topologies. It also acts as an IEEE 802.15.4 PAN Coordinator and 

has to be a Full Functional Device (FFD)  

• ZigBee End Device (ZED): ZED does not allow other devices to associate with it and  

does not participate in routing. It  can be a Reduced Function Device (RFD) 

 

Three network topologies are supported: star, mesh and cluster-tree; as shown in Figure 2.8. 

 

              
 

 

 a) star topology b) mesh topology c) cluster-tree topology 

Figure 2.8: ZigBee network topologies 

 

In the star topology (Figure 2.8 a), a single node starts the network, operating as a ZC. It chooses 

a unique PAN identifier (not being used by any other ZigBee network in the range). The 

communication paradigm of the star topology is centralized, i.e. each device must send its data to 

the ZC first, which then transmits it to the destination node. In mesh topology (Figure 2.8 b) also 

the communication is decentralized, i.e. each node can directly communicate with any other node 
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within its radio range. Thus mesh topology enables networking flexibility, but at the cost of 

additional complexity. The cluster-tree network topology (Figure 2.8 c) is a special case of a 

mesh network with a single routing path between any pair of nodes. The ZC identifies the entire 

network and every cluster is managed by a separate ZR. In beacon enabled mode the ZRs must 

provide synchronization to the nodes in its cluster while avoiding collision with other clusters.  

2.3.2 ZigBee Network Layer 

The ZigBee Network Layer supports two service entities: The Network Layer Data Entity 

(NLDE) and Network layer management entity (NLME). NLDE-SAP provides services specific 

to data transmission over the network whereas the NLME-SAP provides network management 

services and maintenance of Network Information Base (NIB), as shown in figure 2.9. 

 

Figure 2.9:  Network Layer reference model Error! Reference source not found. 
 

According to the standard, NLDE should provide the following services [11]: 

• Generation of the Network level PDU (NPDU): The ability to generate an NPDU from an 

application  layer PDU through the addition of an network protocol header. 

• Topology specific routing: The ability of transmitting an NPDU to the next device on the 

route to the final destination. 

NLME is responsible for: 

• Configuring a new device: The ability to sufficiently configure the stack for operation as 

required. Configuration options include beginning operation as a ZigBee coordinator or 

joining an existing network. 
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• Starting a network: The ability to establish a new network. 

• Joining and leaving a network: The ability to join or leave a network as well as the 

ability for a ZigBee coordinator or ZigBee router to request a device to leave the network. 

• Addressing: The ability of ZigBee coordinators and routers to assign addresses to devices 

joining the network. 

• Neighbor discovery: The ability to discover, record and report information pertaining to 

the one-hop neighbors of a device 

• Route discovery: The ability to discover and record paths through the network whereby 

messages may be efficiently routed. 

• Reception control: The ability for a device to control when the receiver is activated and 

for how long, enabling MAC sub-layer synchronization or direct reception. 

The ZigBee Coordinator also defines some additional network parameters e.g. the maximum 

number of children (Cm) any device is allowed to have, maximum number (Rm) router-capable 

devices. Every device has an associated depth, representing the number of hops a transmitted 

frame must travel from itself to reach the ZigBee Coordinator. The ZC has a depth of 0, while its 

children have a depth of 1. The ZC also determines the maximum depth (Lm) of the network. The 

maximum number of children, routers and network depth are used for calculating the addresses 

of the devices in the network, in a distributed address scheme [101]. 

Short Address Assignment 

A parent device uses the values of Cm, Rm, and Lm to determine the sizes of the address sub-

blocks distributed by each parent, calculated using Cskip function applied on the depth (d) of the 

network. For a given network depth d, Cskip(d) is calculated as follows[11, 102]: 

⎪⎩

⎪
⎨
⎧

−
⋅−−+

=−−⋅+
= −−

   Otherwise               ,
Rm1

RmCmRmCm1
    1Rm if                              ),1dLm(Cm1

)d(Cskip 1dLm  (2.3)

A parent device that has a Cskip(d) value of zero is not capable of accepting children and must 

be treated as an end device. A parent device that has a Cskip(d) value greater that zero must 

accept devices and assign addresses if possible. A parent device assigns an address that is one 

greater than its own to the first router that associates. The next router receives an address that is 
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separated by the return value of the Cskip(parent depth) function. The maximum number of 

associated routers is defined by the network parameter nwkMaxRouters (Rm). 

Considering a parent node with a depth d and an address of Aparent, the number of child devices n 

is between 1 and Cm-Rm. 

( )mm RCn1 −≤≤  (2.4) 

The Achild address of the nth child router is calculated according to Eq. 2.5(n is the number of 

child routers): 

( ) ( )
( ) ( ) 1n,dCskip1nAA

1n,1dCskip1nAA

parentchild

parentchild

>×−+=

=+×−+=
 (2.5) 

The Achild address of the nth child end device is calculated according to Eq. 2.6 (n is the number 

of child end devices): 

( ) ndCskipRmAA parentchild +×+=  (2.6) 

Figure 2.10 depicts an example of an address assignment scheme.  The parameters used in the 

address assignment are the following: maximum depth (Lm) = 3, maximum children (Cm) = 6 and 

maximum routers (Rm) = 4. 

 

Figure 2.10:  Address assignment scheme example [36] 
 

Depth = 0 

Depth = 1 

Depth = 2 
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Figure 2.11 shows the ZigBee Coordinator (0x0000) available addressing scheme. Considering 

the above network parameters, the ZigBee Coordinator is allowed to associate up to A4 routers 

and 2 end devices in its available address pool. On the other hand, the ZR (0x0020) is allowed to 

associate up to 4 ZRs and 6 ZEDs. 

 

 

 

 

Figure 2.11: ZigBee Coordinator addressing scheme [36] 

Tree-Routing 

This routing mechanism is based on the short addressing scheme and was initially proposed by 

MOTOROLA [20]. Each device, upon the reception of a data frame, reads the routing 

information fields and checks the destination address. If the destination is a child of the device 

(neighbour table check), the device relays the packet to the appropriate address. If the destination 

address is not a child, the device must check if the address is a descendent using the condition in 

2.7, where A is device network address, D the destination address and d the device depth in the 

network.  

( )1dCskipADA −+<<  (2.7) 

The next hop (N) address when routing down is given by: 

)(
)(
)1(1 dCskip

dCskip
ADAN ×⎥

⎦

⎥
⎢
⎣

⎢ +−
++=  (2.8)

If the destination address is not a descendant, the device relays the packet to its parent and so on. 
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CHAPTER 3 
TECHNOLOGICAL PLATFORMS AND DEVELOPMENT TOOLS 
 

This chapter introduces the hardware and software platforms: the FLEX boards [21], the ERIKA 

real-time OS [6]; and the tools used for development, debugging and analysis: RT-Druit [22], the 

MPLAB In-circuit Debugger (ICD) [23], and the Chipcon packet sniffer [24]. The Open-ZB 

implementation [25] of IEEE 802.15.4/ZigBee protocol over TinyOS is described in brief in the 

end. 

3.1 The FLEX Board 
FLEX embedded development board was the basic hardware used on which ERIKA was 

installed. Embedded with a Michrochip dsPIC microcontroller, the FLEX is able to support real-

time kernels.  

Its main features are:  

• DsPIC33FJ256MC710 Microcontroller with 40 MHz frequency [26]; 

• Flexipanel EASYBEE IEEE 802.15.4 Transceiver module [27]; 

• 256 KB of Programmable flash memory ; 

• Modular hardware architecture ; 

• In-circuit programmer connectors; 

• Support of the ERIKA real-time kernel, provided by Evidence Srl [28]; 

 

The FLEX device can be configured by mounting various components on the Base Board. In our 

case, it mounts a Microchip dsPIC micro-controller, and exports almost all the pins of the micro-

controller. As depicted in Figure 3.1, several daughter boards can be connected in piggyback to 

the Flex Base Board. The daughter boards can have different features and they can be easily 

combined to obtain complex devices. 
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Figure 3.1: The FLEX programming board [21] 

3.2 ERIKA 
Erika is a multi-processor kernel architecture, running a real-time scheduler and resource 

managers, thus allowing predictable timing behavior of the tasks. It implements a number of 

Application Programming Interfaces (APIs), closely matching the OSEK/VDX standard [29] for 

automotive embedded controllers. It supports several microcontrollers including the Microchip 

dsPIC used in the FLEX board. 

 

Erika provides support for, 

• Four OSEK conformance classes to match different application requirements 

• Preemptive and non-preemptive multitasking 

• Fixed priority scheduling 

• Shared resources, including stack 

• Periodic activations of tasks using alarms 

• Centralized error handling 

The kernel provides a minimal set of primitives which can be used to implement a multithreaded 

environment. It supports OIL (OSEK Implementation Language) as a standard configuration 

language, used for the static definition of the RTOS objects which are instantiated and used by 

the applications. This can be used to configure tasks to match the requirements of real-time 

applications. 

Tasks in ERIKA are scheduled according to statically assigned priorities, and share resources 

using Immediate Priority Ceiling protocol. Interrupts can always preempt running tasks to 

execute operations required by the peripherals.  
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3.3 RT-DRUIT 
RT-Druid is the Eclipse-based development environment for the ERIKA RTOS, used to write, 

compile, and analyze an application. RT-Druid is composed by a set of plug-ins for the Eclipse 

Framework [30]. The RT-Druid Core plug-in contains all the internal metamodel representation, 

providing a common infrastructure for the other plug-ins, together with ANT scripting support. 

 

The RT-Druid Code Generator plug-in implements the OIL file editor and configurator (for more 

detail on OSEK/VDX and OIL, see [29]), together with target independent code generation 

routines for ERIKA. The RT-Druid Schedulability Analysis plug-in provides the Schedulability 

Analysis framework, implementing algorithms like scheduling acceptance tests, sensitivity 

analysis, task offset calculation; and provides a set of tools for modelling, analyzing, and 

simulating the timing behaviour of embedded real-time systems. 

3.4 Microchip MPLAB ICD 
The MPLAB In-Circuit Debugger is the hardware debugger/programmer for Microchip Flash 

Digital Signal Controller (DSC) and microcontroller (MCU) devices. It provides MPLAB 

Integrated Development Environment (IDE), with a graphical user interface to debug and 

program PIC Flash microcontrollers and dsPIC DSCs .The ICD probe is connected to the PC 

containing the program using a high-speed USB 2.0 interface and is connected to the target with 

a connector compatible with the MPLAB ICD 2. Program or Debug mode is chosen, as required, 

and the binary file is loaded to the target device. 

 

Figure 3.2: The MPLAB In-Circuit debugger [31] 
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3.5 IEEE 802.15.4/ZigBee Protocol Analysers 
The IEEE 802.15.4 compliant Chipcon CC2420 Packet Sniffer has been used throughout the 

development process for validation and debugging purposes by interpreting the packets being 

transmitted through the channels. It was also used for performance analysis purposes where 

sniffer output files recording packets transmitted during various experiments were parsed to 

measure throughput and average delays.  

 

a) Snapshot of the sniffer application  b) CC2420 EB with a CC2420EM 

Figure 3.3: Chipcon IEEE802.15.4/ZigBee packet sniffer [24] 

 

 Figure 3.3a shows a snapshot of the sniffer application. It provides: 

• Raw list of the received packets with timestamp information 

• Interpretation of the packets information, highlighting the different packet fields 

• Packet fields filtering 

• Device list 

Chipcon also provides a tool used to test the transceivers by allowing viewing and interacting 

with the CC2420 transceiver memory registries.  

3.6 Open-ZB TinyOS Protocol Stack 
The Open-ZB stack implementation [13] includes IEEE 802.15.4 Data Link Layer and a part of 

the ZigBee Network Layer. The ERIKA implementation of the protocol stack is loosely based on 

this implementation, with some basic changes and enhancements (more detail in chapter 4).  
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The Open-ZB  stack has been implemented for MicaZ [31] as well as TelosB [32] motes, and has 

three main blocks: (1) the hardware abstraction layer, containing the IEEE 802.15.4 physical 

layer and the timer modules (2) the IEEE 802.15.4 MAC sub-layer; and (3) the ZigBee Network 

Layer. The   IEEE 802.15.4 implementation includes the slotted CSMA/CA implementation,   

the different types of transmission scenarios (direct, indirect and GTS transmissions), association 

of the devices, channel scans and beacon management.  

The Network layer supports data transfer between the Network Layer and the MAC sub-layer, 

the association mechanisms and the network topology management (e.g. cluster-tree support by 

the ZigBee Addressing schemes) and routing (e.g. neighbour routing and tree-routing). Security 

is not supported.  

The difficulties encountered in implementation of the stack as well as observations based on 

performance evaluations are listed in [3]. There were hardware related limitations e.g. memory 

constraints, transceiver limitations and problems with the consistency and accuracy of timers; 

however, the biggest and most important of these was considered to arise because of the nature 

of the TinyOS task scheduler. TinyOS does not support tasks prioritization and the scheduler is 

non pre-emptive. The tasks invoked by various events are posted to the queue and are processed 

in FIFO order. This significantly impacts the behavior of the protocol stack, as sharing the 

microcontroller between all protocols tasks is very demanding, specially for high duty cycles, 

and there is no way to guarantee execution of critical tasks on time. For example, processing and 

transmitting the beacon frame is essential for the network stability, and should take precedence 

over other tasks. This doesn’t happen when a FIFO scheduler is used and under heavy load, 

beacon frames may be delayed in transmission, processing, or lost in both cases. This results in 

the loss of synchronization. This has been one of the major motivations to implement the stack 

on ERIKA, which supports task prioritization and preemption. 
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CHAPTER 4 
Protocol Stack Implementation                
 

This chapter summarizes the implementation details, highlighting some of the most important 

features of the IEEE802.15.4/ZigBee stack implementation on ERIKA and its software 

architecture. Section 4.1 describes the implementation architecture, including a brief description 

of the system components and customized libraries provided by the RETIS Lab [18] to support 

the stack implementation. Section 4.2 shows the OS configuration and describes the tasks and 

alarms created to support the implementation. The implementation of IEEE802.154 protocol 

functionalities is described in section 4.3 and the ZigBee implementation is outlined in section 

4.4. Section 4.5 describes the TDBS implementation. 

4.1 Implementation Architecture 

4.1.1 System Overview 

The implementation follows a layered architecture. Each layer makes use of the services 

provided by the lower layers and provides services to the upper layers [33]. Figure 4.1 shows 

various elements of the stack, including the system components and their interactions. Table 4.1 

summarizes services provided by each of these components. 

 

 

Figure 4.1:  Protocol stack layered architecture 
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  Layer 

 

Description 

HW 

 

Represents the hardware components used: the FLEX development 

board, the dspic33F microcontroller, and the CC2420 transceiver. 

HW Interrupts Component handling all the hardware interrupts. Implements 

interrupt service routines (ISRs). 

CC2420 Drivers Provides an abstraction for the upper layers to use the CC2420 

transceiver. The transceiver conforms to the IEEE 802.15.4, 

providing most of the functions required to implement the protocol. 

ERIKA The Operating System: manages hardware;  provides task 

management, resource management and timer management services. 

CC2420 HAL Provides an additional layer of abstraction over the CC2420 driver, 

enabling the Physical and MAC layers to communicate using format 

specific to the communication protocol. 

Alarms Provide software abstraction for the timers. Used to activate periodic 

tasks required for handling various activities of the slotted mode. 

Common Lib Provides common utilities such as printing data on the console, 

dynamic memory management, and the basic data structure 

implementations. 

Ie
ee

80
21

54
 L

ib
 phy Implements IEEE802.15.4 PD-SAP and PLME-SAP primitives. 

mac Implements IEEE802.15.4 MCPS-SAP and MLME-SAP primitives. 

nwl Implements ZigBee Network Layer management, addressing and 

routing  primitives. 

Apl Used for implementing Test applications. 

Table 4.1: Services provided by various components 

 

The ieee802154 Lib implements the communication protocols. It includes the physical and MAC 

layers of IEEE 802.15.4 and basic network layer functions of ZigBee. These layers are 

concerned only with the higher level implementation details specific to the communication 
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protocol; lower level details related to hardware, timers, interrupts and memory management are 

handled by the underlying layers, as described in Table 4.1. 

4.1.2 File System Architecture 

Figure 4.2 shows the implementation file system architecture. The source code is located in the 

/contrib/ieee802154/libscrc directory while corresponding header files are placed in 

/contrib/ieee802154/inc. The inc directory also contains additional header files of constant 

declarations (mac_const.h) and enumerations (e.g. mac_enumerations.h). The entire file system 

is placed in the root ERIKA installation directory. 

 The common subdirectory (Figure 4.2) implements general utilities, including modules to 

control the cc2420 transceiver (cc2420.c), access console and serial ports (console.c, 

ee_radio_spi.c, eeuart.c), and memory management functions (sralloc.c, netbuff.c). The circular 

queue implementation (cqueue.c) needed to support transmission buffers is also placed in this 

directory. The hal directory contains hal_cc2420.c and hal_interrupts.c, implementing modules 

to read and write from transceiver, and interrupt service routines respectively.  

The IEEE 802.15.4 and ZigBee implementation files are placed in phy, mac and nwl directories. 

The phy directory (Figure 4.2) contains Physical Layer Data Service (PD_DATA.c) as well as 

Physical Layer Management Services (PLME_CCA.c, PLME_ED.c, PLME_GET.c, 

PLME_SET_TRX_STATE.c, PLME_SET.c) implementation. Phy.c implements physical layer 

initialization modules. Similarly, the MAC layer implementation files are placed in the mac 

directory, which contains files implementing MCPS Data Component (MCPS_DATA.c) as well 

as Mac Layer Management Services (MLME_ASSOCIATE.c, MLME_GET.c, MLME_GTS.c, 

MLME_SET.c, MLME_START.c). Mac.c contains initialization modules, functions implementing 

CSMA/CA, beacon management functions, and the functions to process received data and 

command frames. The mac_func.c file implements auxiliary utility function. The ZigBee 

network layer functions have been implemented in Nwl.c. 
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Figure 4.2:  Implementation file system architecture 

 

4.2 Configuring ERIKA 

4.2.1 OS Configurations using OSEK 

Erika supports a reduced OSEK/VDX API [34], providing support for real-time thread 

activation, mutual exclusion, alarms, and counting semaphores. Objects can be declared and 

configured using OSEK Implementation Language (Oil), also used to assign task priorities and 

specify scheduling policy. Code Example 4.1 shows a snapshot of the conf.oil file, used to 

configure system components for the stack. 
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CPU mySystem { 
 
 OS myOs { 
  EE_OPT = "DEBUG"; 
  EE_OPT = "__HAS_TYPES_H__"; 
  EE_OPT = "__ADD_LIBS__"; 
  LIB = ENABLE { NAME = "ieee802154"; }; 
 
  CFLAGS = "-DDEVICE_TYPE_COORDINATOR";  //DEVICE TYPE 
COORDIANTOR 
  //CFLAGS = "-DDEVICE_TYPE_END_DEVICE"; //DEVICE TYPE END 
DEVICE 

   
  //---------------------------------// 
 
  CPU_DATA = PIC30 { 
   APP_SRC = "code.c";    
   MULTI_STACK = FALSE; 
   ICD2 = TRUE; 
  }; 
 
  MCU_DATA = PIC30 { 
   MODEL = PIC33FJ256MC710; 
  }; 
   
  BOARD_DATA = EE_FLEX { 
   USELEDS = TRUE; 
  }; 
   
  KERNEL_TYPE = FP; 
   
 }; 
  
 COUNTER myCounter; 
}; 

Code Example 4.1: Configuration of System Components 

This file defines and configures the Oil objects and resources, including the programming board, 

Micro Controller Unit, the OS, Counters, Tasks, and Alarms. It also defines the operating system 

and its properties. It also selects the device type for the node, which can be either Coordinator, 

Router or End Device.  

 

Figure 4.3 shows the compilation procedure generating the executable file. The system generator 

translates the configuration file into C code which is then used by the compiler along with the 

application source code to generate the object code.  

The executable is finally loaded to the board using MPLAB In-Circuit Debugger. 
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Figure 4.3: Compilation of an application in ERIKA [34] 

4.2.2 Task Creation and Alarms 

The conf.oil file also defines the tasks needed for the stack implementation. Code Example 4.2 

shows syntax of Task configuration.  

 TASK TaskName { 
  PRIORITY = …; 
  STACK = …; 
  SCHEDULE = …; 
 }; 

Code Example 4.2: Task declaration format 

The PRIORITY attribute defines the priority of a task. It is used in the scheduling of tasks. 

SCHEDULE defines the preemptiveness, with the enum variable “FULL” declaring a 

preemptable task and “NON” declaring a non-preemptable task. The stack is specified to be 

shared among all tasks by setting the STACK attribute to SHARED for every task. Figure 4.4 

shows the portion of the conf.oil file declaring tasks. Tables 4.1 and 4.2 describe the 

communication services each of these tasks are used for. 
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Figure 4.4: Snapshot of conf.oil showing task configurations 
 

Table 4.1 describes the C2420 reception tasks. The ReadDispatcher task is activated when there 

is an interrupt from the transceiver indicating reception of a frame. ReadDispatcher calls   the 

read_Data function, which retrieves the frame from the transceiver memory. Subsequently, it 

checks the frame type of the received packet by parsing the data type field and posts one of the 

DataFrameDispatcher, AckFrameDispatcher or CmdFrameDispatcher tasks depending on 

whether the frame received is of data, acknowledgement or command type. 

DataFrameDispatcher, AckFrameDispatcher and CmdFrameDispatcher, upon being activated, 

call process_data(); process_ack() and process_cmd() functions respectively. The functions 

process the received frame with further processing depending on frame type.  
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Task Name  Description  Associated 
Alarms 

Period 

      ReadDispatcher Task posted upon the reception 
of the FIFO ISR 

N/A N/A 

DataFrameDispatcher Task posted in the 
ReadDispatcher to process data 

frames 

N/A N/A 

AckFrameDispatcher Task posted in the 
ReadDispatcher to process 
acknowledgment frames 

N/A N/A 

CmdFrameDispatcher Task posted in the 
ReadDispatcher to process 

command frames 

N/A N/A 

Table 4.1: CC2420 reception tasks 

In case the received frame is a beacon, it is processed directly (instead of posting a task) with a 

call to process_beacon function.  This is achieved by having a separate memory buffer for 

beacon frames, as distinct from the send and receives buffers. Since these memory locations are 

shared by different modules and require mechanisms for mutual exclusion and synchronization 

(using ERIKA “resources”), having separate buffer for beacons enables on-time processing of 

beacon frames. 

Table 4.2 describes the tasks used for the creation of superframe. Many of these tasks are 

periodic with fixed inter arrival rates, with periods depending on the selection of the beacon 

order and the superframe order (except for backoff_firedTask). The backoff_firedTask has a has a 

period of 320us, equivalent to 20 symbol duration in a 2.4 Ghz band.  Periodic tasks are activated 

using alarms, which can be set to fire periodically at specified intervals. The associated alarms 

with the periodic superframe creation Tasks are shown in Table 4.2. 
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Task Name Associated Alarms Description Period 

backoff_firedTask backoff_firedAlarm Fired on every backoff. Used 
to implement the slotted 
CSMA/CA 

320 us 

before_bi_firedTask Before_bi_firedAlarm Fired before every beacon 
interval to switch the 
transceiver on RX (non 
coordinator/router) or TX 
(coordinator/router) 

BEFORE_BI_TI
CKS – Beacon 
Interval 

bi_fired_Task bi_fired Alarm Fired on every beacon 
interval 

Beacon Interval 

sd_firedTask sd_fired Alarm Fired at the end of the 
superframe 

N/A 

before_time_slot_fired 
Task 

Before_time_slot_fired 
Alarm 

Fired before each time slot to 
set the transceiver to RX or 
TX during the GTS period 

N/A 

time_slot_firedTask time_slot_fired Alarm Fired on every time slot of the 
superframe 

Superframe 
Duration / 16  

Table 4.2: IEEE802.15.4 Superframe time-triggered TASKS 

The alarms use counter mycounter, whose granularity is set to 320 microseconds, equal to the 

backoff period in the 2.4 GHz band.  The pattern of correspondence between alarms and tasks is 

that of <alarm_name>Alarm calling the task <alarm_name>Task. The ieee802154alarms 

component implements the necessary functions to configure and manage the alarms.  

Code Example 4.3 shows the definition of backoff_firedAlarm. All other alarms have been 

similarly defined in correspondence with the respective tasks. 
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  ALARM backoff_firedAlarm { 

    COUNTER = "myCounter"; 

    ACTION = ACTIVATETASK { TASK = "backoff_firedTask"; }; 

  }; 

Code Example 4.3: Example of an Alarm Definition 

  

The activation of each of the tasks, with the exception of the dispatcher tasks (DataFrameDispatcher, 

AckFrameDispatcher, CmdFrameDispatcher), is controlled by having an explicit alarm. These alarms 

activate the tasks depending on the selected cycle value parameters of the alarm. 

4.3 IEEE 802.15.4 Implementation 
The implementation is broadly based on the open-ZB implementation of IEEE 802.15.4 in 

nesC/TinyOS [35] with some important differences and optimizations. One of the basic 

differences is in the timer abstraction provided to the upper layers. While Open-ZB implements a 

centralized timer component to handle all timer dependent events, Erika implementation uses 

independent alarms for each task. Queuing and Buffering mechanisms are also different and have 

been improved in the Erika implementation. While TinyOS implementation uses global arrays 

and variables to maintain buffers, Erika provides a more sophisticated and efficient mechanism 

by implementing a circular queue for all buffering purposes.  

 

Changes have also been made in the implementation of higher level protocol features. The 

association mechanism uses the indirect transmissions, as specified by the standard. GTS 

implementation has been optimized by implementing a dynamic reshuffling of available GTS 

slots with deallocations.  Minor changes have also been made in the slotted CSMA/CA 

implementation. The following sections describe some the important aspects of the 

implementation. 

4.3.1 Superframe Creation 

The superframe creation uses the following 6 Alarms (also see Figure 4.5), to mark critical 

points in the active portion of the superframe: 

• bi_firedAlarm – Marks the start of a beacon interval. Period depends on the BI parameter. 
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• before_bi_firedAlarm – Activated before the bi_firedAlarm in order to enable and set the 

transceiver in RX mode for End Devices or TX in the case of the Coordinator. The offset 

parameter, relative to the bi_firedAlarm, is defined by the BEFORE_BI_INTERVAL 

constant. 

• sd_firedAlarm – Marks the end of the active portion of the superframe. Period depends on 

the SD parameter. 

• time_slot_firedAlarm – Alarm to mark time slots. Period equals to the time slot duration, 

which in turn depends on the parameter SD.  

• before_time_slot_firedAlarm – Similar to the before_bi_firedAlarm, this alarm is used to 

activate the transceiver before the beginning of each time slot. Used for the 

implementation of the GTS mechanism. The offset parameter, related to the 

time_slot_firedAlarm, is defined by the constant BEFORE_TS_INTERVAL. 

• backoff_firedAlarm – Fires on every timer tick. The period of this alarm is 320 us as it is 

defined by the IEEE 802.15.4 standard. The backoff_firedAlarm is used to implement the 

slotted CSMA/CA. 

 

 
Figure 4.5: Superframe structure alarms 

 

These alarms use the hardware counter, with a granularity of 320 us per tick, equal to one 

backoff duration. The ieee802154alarms component implements the necessary functions to 

configure the fire period of the alarms given a certain superframe configuration (BI and SD).  

The priorities associated with the tasks posted by the superframe alarms are highest to ensure 

that all nodes remain synchronized during the whole superframe. 
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4.3.2 Frame Construction 

The MAC frame format, as defined by the standard, is shown in Figure 4.6. It is composed of a 

Mac Header (MHR), a MAC payload and a MAC Footer (MFR). The fields of MHR appear in a 

fixed order, but the addressing fields can be of zero (source device being coordinator) or variable 

(short or long address) length. 

 

 
Figure 4.6: General MAC frame format [10] 

 

The frame control field (Figure 4.7) is of 16 bits and contains information defining the frame 

type, addressing fields and other control flags. The frame thus depends on the type of the frame, 

and other type-dependent parameters. 

 

Figure 4.7: Frame control field format [10] 
 

To deal with this variety of combinations, the strategy used was to adopt a generic frame format 

structure. This was defined as MPDU, and has the format as shown in Code Example 4.4  

 
 
typedef struct MPDU 
{ 
 EE_UINT8* length; 
 EE_UINT8 frame_control1; 
 EE_UINT8 frame_control2; 
 EE_UINT8 seq_num; 



35 
 

 EE_UINT8 data[120]; 
 EE_UINT8 retransmission; 
 EE_UINT8 indirect; 
}MPDU; 

     Code Example 4.4: MPDU structure used for creation of frames 

To construct a frame in general, an MPDU variable is created followed by the assignment of the 

packet length and the frame control fields. This is done using the auxiliary function 

set_frame_control, which takes as argument the subfields of the frame control field (e.g. 

frame_type, security etc) and sets the corresponding bits of the MPDU accordingly. The source 

and destination addresses are written in the data array, whose size may vary depending on the 

type of address used, and is specified in the frame control field for the destination device to be 

able to parse it. The pointer is advanced and the frame payload, which again depends on the 

frame type, is written. 

4.3.3 Buffer Management 

There are four buffers in the implementation: 

sendBuffer: to store messages to be sent using normal  (direct) transmission procedure; 

receiveBuffer: to store messages received, but yet to be processed; 

indirect_trans_queue: to store messages to be sent using indirect transmission method; 

gts_send_buffer: to store messages to be sent during CFP period, using GTS mechanism. 

            

The management of each of these buffers is described below.      

Send and Receive Buffers        

The send and receive buffers (sendBuffer, receiveBuffer) are defined as instances of circular 

queue structure, which is defined in cqueue.h file under common library. The queue structure has 

three elements: an array to store messages, and front and rear pointers, as shown in Code 

Example 4.5. 

 

 

*The type EE_UINT<number of bits> is an E.R.I.K.A. type definition and represents an unsigned integer with the 

size of <number of bits>. 
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typedef struct { 
 MPDU arr[ARR_SIZE]; 
 EE_INT8 rear,front; 
 
}c_queue; 

 
Code Example 4.5: Circular queue structure  

The circular queue structure consists of an array that contains the items in the queue, and two 

array indexes representing the front and rear pointers. The front pointer points to before the first 

element in the queue, and the rear pointer points to the last element in the queue (Figure 4.8).  

 

 
Figure 4.8: Circular queue for send and receive buffers 

If the front pointer is before the rear pointer, the queue is full. The array is defined to be of 

maximum ARR_SIZE, which is 15. The ADT provides functions to insert, remove and retrieve 

the data into/from the queue. Additional functions to insert data at a relative position within each 

block are also implemented.  

Indirect Transmissions Buffers 

The buffer used for the indirect transmissions is defined as an array of indirect transmission 

elements, whose structure shown below (Code Example 4.6):  

 
typedef struct 
{ 
 EE_UINT8 handler; 
 EE_UINT16 transaction_persistent_time; 
 EE_UINT8 frame[127]; 
 
}indirect_transmission_element; 

Code Example 4.6: indirect transmission element structure 

    8  9  10 11

Front  Rear 
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An array of INDIRECT_BUFFER_SIZE size is maintained by the Coordinator to store messages to 

be sent using indirect transmission. When it has to send a message using indirect transmission, it 

searches by going through the indirect transmission queue, comparing the destinations addresses 

of every message in the queue to the device requesting indirect transmission. If found, the 

message is removed from the indirect transmission queue, and is inserted into the direct 

transmission buffer. The request is ignored if there are no messages for the requested address. 

Handler is used to identify whether a particular message has already been sent, specified by a 

value of zero. Transaction_persistent_time is the amount of time for which each message is kept 

in the buffer, and is deleted after this time is elapsed. 

GTS Buffer and Management  

The GTS buffer implementation differs for end device and coordinator.  For end device, a FIFO 

queue of MPDUs, gts_send_buffer  of SEND_GTS_BUFFER_SIZE is maintained, along with two 

pointers in and out, indicating rear and front, and a variable representing the total number of 

messages in the buffer. If the device has a GTS allocated and the gts_send_buffer is not empty, 

the message is sent in the allotted slot and the variables updated. For Coordinator, along with the 

gts_send_buffer storing messages, another array gts_slot_list is used, which maintains the 

available time slots. Each element in the gts_slot_list array represents one GTS, and there can be a 

maximum of seven. The structure of the GTS slot element is as shown in Code Example 4.7: 

 
typedef struct gts_slot_element 
{ 
 EE_UINT8 element_count; 
 EE_UINT8 element_in; 
 EE_UINT8 element_out; 
 EE_UINT8 gts_send_frame_index[GTS_SEND_BUFFER_SIZE]; 
 
}gts_slot_element; 

   Code Example 4.7: gts_slot_element structure 

 

The gts_slot_element defines a FIFO buffer used to store indexes that reference positions in the 

gts_send_buffer, and it is maintained as the GTS send and receive buffers. The array 

available_gts_index  stores the available indexes. 
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Figure 4.9 shows sniffer snapshots showing allocation of GTS slots on the Alloc request from the 

end device. The allocated slots are listed in the GTS field of the beacons. 

 

 
Figure 4.9: GTS allocation 

 

Figure 4.10 shows deallocation of GTS slot on Dealloc request. As shown, the subsequent 

beacons do not have the allocated frame in the GTS field. 

 

 
Figure 4.10: GTS deallocation 

4.3.4 Beacon Management 

Beacons are transmitted periodically by the Coordinator in order to synchronize the devices in 

the network as well to broadcast the general PAN information (BO, SO, GTS descriptors, 

pending data information etc).  Figure 4.11 shows the structure of a beacon frame. 
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Figure 4.11:  Beacon frame format [10] 

The Mac payload consists of superframe specification fields, GTS descriptor list, pending 

address information and optional beacon payload. The superframe specification field includes 

values of BO, SO, Battery life extension information, PAN Coordinator (indicating whether the 

device transmitting beacons is the PAN Coordinator) and Association Permit (indicating whether 

the new devices are allowed to join).  

 

The beacon management implementation includes primitives to create beacons (in Coordinator) 

and to process beacons (in End Devices). The create_beacon function is used by the Coordinator 

to construct beacon frames. In order to avoid any delay, the beacon is created in advance, during 

inactive period, and stored at a separately allocated memory space (mac_beacon_txmpdu). This 

avoids delays that could occur had a common buffer been used. The created beacon frame is sent 

without contention when the next bi_firedAlarm fires. 

 

The flowchart in figure 4.12 shows the steps of beacon creation: (1) MAC header is written; (2) 

Superframe specification is written, including the PAN parameters such as BO and SO; (3) GTS 

descriptor field is constructed, indicating the allocated and deallocated GTS, if any; (4) pending 

address descriptors are added, if any; (5) beacon payload is added, if the length is specified to be 

non-zero. The Coordinator can modify the PAN parameters using the MLME-START_request 

primitive, passing new values, which are updated in the following superframes. 
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                                 Figure 4.12: Beacon creation 

Figure 4.13 shows a sniffer snapshot showing coordinator transmitting beacons.  

 

 
Figure 4.13: Sniffer snapshot showing beacon transmission 
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4.3.5 The Slotted CSMA/CA Mechanism 

All transmissions in the Contention Access Period, with the exception of beacon and 

acknowledgement frames, follow the slotted CSMA/CA mechanism. Its implementation involves 

several functions as described below: 

• send_frame_csma() : Called after a message is enqueued in the send buffer, this function 

checks if there is a slotted CSMA/CA execution chain already started by checking the 

global variable performing_csma_ca. If not, it sets the variable and initiates the slotted 

CSMA/CA procedure. Figure 4.14 shows the implementation with the help of a flowchart. 

 

 

 Figure 4.14: send_frame_ca() function flowchart 
 

• perform_csma_ca(): Called from send_frame_csma(), it first initializes the slotted 

CSMA/CA variables by calling  the init_csma_ca() function. It also initializes BE based 

on battery life extension support and finally sets the variable 

csma_locate_backoff_boundary, which triggers the final steps of the slotted CSMA/CA 

from the next backoff boundary. Figure 4.15 shows the implementation using a flowchart. 
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 Figure 4.15: perform_csma_ca() function flowchart 
 

• init_csma_ca (EE_UINT8 slotted): Used to intialize the slotted CSMA/CA variables 

including NB, BE and CW; 

• backoff_fired_check_csma_ca(): On the firing of the backoff_fired alarm, this function 

checks if there is a message to be sent in CAP. If yes, it initiates the final stages of the 

algorithm by counting the number of backoffs and calling perform_csma_ca_slotted(). 

The steps are described in the flowchart of Figure 4.16. 

• check_csma_ca_send_conditions(): Used to evaluate the conditions necessary to send a 

messages in the CAP period. It calculates whether a message can be sent by adding the 

frame length and correspondent IFS symbols (also adding the acknowledgment turnaround 

time if the message requires an acknowledgment). Returns true if there is enough time to 

send the message; 

• perform_csma_ca_slotted( ): It is called from the backoff_fired_check_csma_ca() function 

and executes the final  steps of the slotted CSMA/CA procedure.  
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Figure 4.16: backoff_fired_check_csma_ca() function flowchart 

4.3.6 Indirect Transmissions 
For indirect transmissions, an array (of INDIRECT_BUFFER_SIZE) is maintained by the 

Coordinaotor,  storing messages to be sent using indirect transmission procedure. The structure of 

the elements of the buffer (indirect_transmission_element) is shown in Code Example 4.8. 

Handler is used to identify whether the message has already been sent (specified by a value of 

zero). The transaction_persistent_time element is the amount of time for which each message is 



44 
 

to be kept in the buffer waiting for the indirect transmission request. The frame array stores the 

message. 

 
typedef struct 
{ 
 EE_UINT8 handler; 
 EE_UINT16 transaction_persistent_time; 
 EE_UINT8 frame[127]; 
 
}indirect_transmission_element; 
 

Code Example 4.8: Indirect transmission element structure 

When a device has an indirect transmission message, the message is stored in the indirect 

transmission buffer.  At the time of the creation of the next beacon, the buffer is checked for 

messages and if found, recipient’s address is specified in the beacon’s pending addresses field. 

The destination device, upon receiving its address in the beacon, sends a data request command. 

On receiving this request, the Coordinator searches in the indirect transmission buffer for the 

correct message. The procedure is to go through the indirect transmission queue, comparing the 

destinations addresses until it finds the correct message. The request is ignored if there are no 

messages for the requested address. If found, the message is sent and removed from the buffer. It 

is also removed if transaction_persistent_time time is elapsed without any indirect transmission 

request received. 

 
The following functions collectively perform the above tasks: 

• void init_indirect_trans_buffer(): Initializes the indirect transmission buffer 

• void send_ind_trans_addr(EE_UINT32 DeviceAddress[]): Called upon the reception of  

the indirect transmission request command from a perspective recipient; it searches for the 

message in the indirect transmission buffer and inserts it into the normal transmission 

buffer.  

• EE_UINT8 remove_indirect_trans (EE_UINT8 handler): Used to remove a message from 

the indirect transmission queue. 

• void increment_indirect_trans(): Called at the end of every superframe, this function 

increments the transaction persistent time of every message in the indirect transmission 



45 
 

queue. If its value for any message reaches macTransactionPersistenceTime, the message 

is discarded. 

 

Figure 4.17 shows indirect transmission of the association response command. The Coordinator 

prepares the response frame after receiving the request and indicates it to the End device by 

adding its address to the pending address field of the beacon. The End device then sends the data 

request command, to which the Coordinator responds by sending the association response 

command frame. 

 

 
Figure 4.17: Indirect transmission sniffer snapshot 

4.3.7 Acknowledgement and Retransmission 
The acknowledgement and retransmission mechanism is implemented using the 

ack_timer_firedAlarm Alarm. The alarm ack_timer_firedAlarm is set before the call to 

PD_DATA_request() in perform_csma_ca_slotted() function when a frame having its ack_reuest 

bit set is being transmitted. The alarm is aperiodic with a duration of ackwait_period, given by 

ackwait_period =  mac_PIB.macAckWaitDuration/20; 

20 beuing the number of symbols in a backoff period. The alarm is cancelled if an 

acknowledgement frame is received within ackwait_period, with the sequence number of the last 

transmitted frame. If the acknowledgement frame is not received within this period, a 
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retransmission is initiated. A transmission failure is reported if the number of re-transmission 

exceeds aMaxFrameRetries. The flowchart of Figure 4.18 shows the implementation approach. 

 

Figure 4.18: Acknowledged transmission and retransmissions flowchart 

 

The following variables are used to control the retransmission procedure: 

• send_ack_check: set if the current transmission requires an acknowledgment;  

• retransmit_count:  keps count of the  number of retransmission attempts for the current 

frame; 

• send_indirect_transmission: variable stating that the current transmission is an indirect 

transmission and doesn’t require a retransmission if the first transmission fails; 

• ack_sequence_number_check: current transmission frame sequence number. 
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The variable ‘associating’ is used for the special case of the transmitted message being an 

association request command. If the requesting device doesn’t get an acknowledgment after 

having transmitted aMaxFrameRetries times, the upper layer is notified with a failure status.  

The variables send_ack_check, and ack_sequence_number_check are initialized in the function 

send_frame_csma(),which is used to start the transmission of the next frame. Figure 4.19 shows 

the transmission of a data frame with acknowledgement request and the transmission of 

acknowledgement by the receiving device. 

 

Figure 4.19: Acknowledged data transmission sniffer snapshot 

4.4 ZigBee Network Layer 
The current network layer implementation supports tree-routing using a distributed address 

assignment mechanism. Network discovery functions are implemented statically since channel 

scan is not supported by lower layers. The implementation is broadly based on the Open-ZB 

implementation of ZigBee Network Layer (in nesC), which is documented in [36]. 

4.4.1 Association and address assignment                                                                                

To be able to transmit data in a PAN, a device must join a network by associating with a 

Coordinator. The association occurs with the candidate device sending an association request 

command to the Coordinator and the Coordinator responding with an association response sent 

using indirect transmission. If the procedure is successful, the end device is assigned a short 
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address, which is used for all future communication within the PAN.  In the Network Layer, the 

decision on association and address assignment is made in the MLME_ASSOCIATE.indication 

primitive which is called  from MAC layer when an association request command is received. 

The flowchart of Figure 4.20 summarizes the procedure.  
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Figure 4.20: Network Layer association and address assignment flowchart 
 

Upon receiving the association request, the parent first checks if the requesting device is new by 

searching its address in the neighbor table. If the request is from a device already associated, 

association response is generated with previously assigned short address. If it is a new device, 

the parent will check if there are new addresses available by checking the NWK PAN variable 
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nwk_IB.nwkAvailableAddresses. If available, new address of the associating device will be 

determined depending on the type of the device (end device or router). The Cskip function 

(described in Chapter 2) is used to compute the address. 

After generating the association response command, the parent device updates the address 

assignment variables. nwk_IB.nwkAvailableAddresses is decremented and if it becomes equal to 

zero, MACASSOCIATIONPERMIT flag is reset to zero. This flag is used to set association permit 

bit of the beacons, which indicates whether new devices are to be accepted or not.  

Figure 4.21 shows a sniffer snapshot of an end device associating with the Coordinator of a 

PAN. As described above, the association response can be seen being transmitted using the 

indirect transmission method, with the Coordinator waiting to receive the data request command 

before transmitting the association response frame. 

 

 

Figure 4.21: Association sniffer snapshot 
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4.4.2 Tree Routing 

The routing procedure is based on the scheme described in 2.3.2.  Routing is implemented in the 

network layer in the function MCPS_DATA_indication, called by MAC layer when a data frame 

is received. The procedure is described using the flowchart of Figure 4.22. 

     

    Figure 4.22: MCPS_DATA_indication()flowchart 
 

On the reception of a data frame, the network layer first checks if the packet was destined to it  

by comparing routing destination field (in the network header) to its own short address. If it 

matches, the data payload is transferred to the upper layer, using NLDE_DATA_indication 

primitive. If the routing destination address is different, and the device is an end device, it will 

forward the data to its parent device. If the current device is a ZigBee Coordinator, it will check 

if the if the final destination is one of its child, by comparing the destination address to the 

addresses in the neighbor table. If found it will set the next hop address to the child device. 

Otherwise, it calculates the next hop by applying the Tree Routing formula of equation 2.8. 

Based on the next hop address, it will route the packet to its parent or to one of its child routers.  
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The data frame transmission procedure is similar to the routing mechanism. After the creation of 

the frame, the device assigns a destination address to the routing fields. If the device is a ZED, 

this address is of its parent. Otherwise, if the device is the ZigBee Coordinator or a ZigBee 

Router, it checks if the destination is a child device; if not, it calculates the next hop address 

using the Tree Routing formula (Section 2.3.2).  

 

 

Figure 4.23: Routing sniffer snapshot 
 

Figure 4.23 shows the NWK fields of a packet being transmitted from source 0x7D to destination 

0x7E, by hopping through the common coordinator parent, 0x0000. The ‘Source Address’ and 

‘Destination Address’ fields represent the source and destination of the current hop, whereas the 

‘NWK Src’ and ‘NWK Dest’ fields represent the original source and destination addresses. 

4.5 Cluster-Tree Network Formation 

The IEEE 802.15.4/ZigBee specifications specify the network formation in the beacon-enabled 

mode for star-based networks only, which lack scalability. Although Cluster-Tree network 

concept is mentioned, there is no description of how it can be implemented. The difference 

between the star-based networks and Cluster-Tree is that in Cluster-Tree networks there are 
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multiple routers which act as IEEE 802.15.4 Coordinators. It does not make any difference in 

non beacon-enabled mode but in beacon-enabled mode all these router generate beacons to 

synchronize their clusters of nodes, which may result in collisions if their timings are not 

coordinated centrally. Such collision beacons of and frames from different clusters may result in 

the loss of synchronization of the clusters. Therefore, a beacon frame scheduling mechanism is 

required to avoid collisions of beacons and frames from different clusters. 

4.5.1 Time Division Beacon Scheduling Mechanism 

Although no mechanism to avoid such collisions is specified in the ZigBee standard, two 

approaches were proposed to avoid the collisions by Task Group 15.4b: (1) a time division 

approach and, (2) a beacon-only period approach.  

We have implemented the first approach of time division. In this approach, time is divided 

among the Coordinators in a way that the active period of any Coordinator falls in the inactive 

period of all other Coordinators of the network (Figure 4.24). 

 

 

Figure 4.24: Beacon Frame Collision Avoidance - The Time Division Approach [19] 

 
Each Coordinator uses a starting time relative to the Coordinator beacon (Beacon_Tx_Offset) to 

transmit its own beacon frames. The beacon offsets is different for each router to ensure that 

their active periods do not overlap. Communication between different clusters is accomplished 

by the using indirect transmissions: every Coordinator wakes up both in its own active period 

and in its parent’s active period.  

The scheduling relies on a negotiation prior to beacon transmission. After successfully 

associating with a network, the ZigBee Router (ZR) sends a negotiation message to the ZigBee 

Coordinator(ZC), embedding the envisaged (BO, SO) pair, and requesting a beacon broadcast 
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permit. The ZC replies with a negotiation response message containing a beacon transmission 

offset (the instant when the ZR must start transmitting the beacon) for successful negotiations. In 

case of rejection, the ZR must disassociate from the network. 

4.5.1 TDBS Implementation 

The TDBS implementation follows the implementation of the same mechanism, over Open-ZB 

stack, as described in [36]. A few minor changes had to be made in the MAC and Network Layer 

SAP namely the addition of StartTime argument in MLME-START_request and NLME-START-

ROUTE_request primitives. It is used as a transmission offset with respect to the parent ZigBee 

Route. Figure 4.25 shows the negotiation mechanism. 

 

Figure 4.25: Time Division Beacon Scheduling Negotiation diagram [19] 
 

After a successful negotiation, the ZR has two active periods:  

I. It´s own superframe duration, in which ZR is allowed to transmit frames to its associated 

devices or relay frames to the descendant devices in the tree, and 

II. Parent’s superframe duration, in which the frames to be sent upstream are sent. 
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To achieve this, the buffering mechanism at Mac had to be changed. Instead of one send buffer, 

with TDBS it has two: one for downstream messages, and the other for upstream messages. 

Which of these two is to be used can be specified from the network layer using a reserved bit of 

TxOptions (transmission options) parameter in  MCPS_DATA_request primitive. 
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CHAPTER 5 
Supporting Different QoS Levels in CAP  
 

This chapter discusses the second major contribution of this thesis, namely the implementation, 

validation and evaluation of traffic differentiation mechanism. 

5.1 Introduction 
IEEE 802.15.4 uses CSMA/CA for medium access control in Contention Access Period (CAP), 

which in its standard form does not provide any means of QoS support. Although the GTS 

mechanism provides an option of guaranteeing timing and reliability in Contention Free Period 

(CFP), it is with many limitations. The first is the restriction on the amount and distribution of 

traffic that can avail this service.  In a superframe, a maximum of eight GTS slots can be 

allocated; implying that in a PAN only a maximum of eight devices can have guaranteed slots in 

any particular superframe. Other devices can only transmit in CAP, without any QoS support. 

Second, GTS is not very useful if the messages requiring QoS support are evenly distributed over 

time. It can only provide guaranteed services in bursts, limited for any device to the guaranteed 

slots allocated to it. Third, even in applications where GTS slots can be considered sufficient, the 

commands requesting guaranteed slot are themselves to be transmitted in the CAP, and are thus 

susceptible to delays and losses. 

Thus, while GTS is considered a good solution for the QoS requirement of the low-rate WPAN 

applications (for which IEEE 802.15.4 was originally designed), the requirements of dense 

sensor networks (especially at high and distributed traffic load) demand a more flexible 

mechanism. This need arises because, in most sensor applications, there can often be found a 

grade of cruciality among the messages being transmitted. It is even more common to find a set 

of messages whose transmission is critically more important compared to the rest. In the case of 

a fire detector application, for example, successful transmission of messages indicating an abrupt 

rise in temperature is critical for the application. Such distinctions can also be made among the 

protocol data units. For example, it can be argued the PAN management commands, needed for 

the synchronization and control of a network, are more important than the regular data frames. 

These critical messages, distributed over time, require that QoS support be extended to CAP. The 
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same can be said of the large scale applications, where getting a guaranteed slot in CFP is not 

possible for most nodes.  

5.2 Related works 
The need to extend QoS support to CAP has drawn considerable attention from the research 

community in recent past and many proposals have been put forward. Since the CSMA/CA 

algorithm is used for medium access in CAP, most of these proposals focus on enhancement of 

the CSMA/CA.  It should be noted that similar proposals had also been made for introducing 

QoS support in IEEE 802.11 [37], which also uses CSMA/CA for medium access. Consequently, 

the 802.11e amendment [38] proposing Hybrid Coordination Function (HCF) has been approved 

and incorporated in IEEE 802.11-2007[39]. However, since the behavior of the slotted 

CSMA/CA used in 802.15.4 is different from the unslotted version used in 802.11, only the 

proposals specific to the slotted version are discussed here.  One such proposal [40] suggests 

introducing Priority Toning strategy, which requires that the node having high priority packet 

transmit a “tone signal” in the backoff slot immediately preceding the next beacon transmission. 

The Coordinator wakes up in this particular slot every superframe to listen for the tone, and if 

detected, it transmits an alarm signal in the next beacon indicating other devices to defer their 

transmissions. This period of deference is used exclusively by the original node having high 

priority packet to transmit the urgent data. The authors propose another modification in [41], 

which advocates that the high priority frames perform only one CCA, instead of the standard 

two, to determine the idleness of the channel before transmission.  

While the simulation results of both of these approaches indicate improved timing and reliability 

for high priority frames, their implementation require fundamental changes in the protocol. The 

first approach, Priority Toning, needs special hardware support, which is not available in many 

chipsets including the CC2420 transceiver used by us. The second major drawback is its 

incompatibility with the standard version of the protocol. If a network has nodes programmed 

according to the current standard as well as priority toning, it may result in collisions in the 

deference period since the nodes programmed with current standard will not recognize the tone 

signal and may thus transmit in the reserved slot. The third disadvantage is that the high priority 

frame is to be transmitted in the superframe next to the one in which request is made, introducing 

intrinsic delay. Also, if multiple devices send such requests during the same superframe, the 
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mechanism fails. The second approach of CCA reduction requires Frame Tailoring, i.e. adjusting 

data packet length in such a way that one CCA becomes sufficient to detect any 

acknowledgement frame transmission. While this method reduces the CCA overhead by half, 

problem of backward incompatibility remains. 

In [20], the authors propose an alternative approach which is compatible with the existing 

standard while providing priority based service. It proposes two means of service differentiation: 

one at node level, and another at network level. At node level, it proposes priority queuing to 

reduce queuing delays of high priority traffic. High priority frames are given preference and sent 

before the low priority frames. At network level, it applies the idea of priority based parameter 

tuning, i.e. initialization of relevant CSMA/CA parameters on per packet basis. The selection of 

parameters is based on a previous study of the slotted CSMA/CA  by the authors [42], in which it 

was observed  that the timing and reliability can be significantly affected by the initialization 

values of the following parameters: (i)macMinBE: the minimum backoff exponent;  (ii)aMaxBE: 

the maximum backoff exponent;  (iii)CWinit: the initial value of the CW; and  

(iv)macMaxCSMABackoffs: the maximum number of backoffs. 

The proposed differentiation service was simulated using OPNET simulator [43], generating 

positive results, described in [20]. We adopted this approach to introduce QoS support in CAP 

by adding priority queuing and per-packet parameter control in our implementation of slotted 

CSMA/CA.  

It should be noted that a similar strategy was also adopted in [44]. However, the effect of each 

parameter was not studied separately. Also, the implementation was built over a TinyOS 

implementation of the protocol stack which we found unreliable for traffic generation at high 

traffic load, making it difficult to study precisely the impact of parameter variations. In 

comparison, Erika provides reliable timing behavior through very high traffic generation rate, 

making it possible to make a more precise study. We also assess each case with and without 

priority queuing, helping distinguish between impacts parameter tuning and priority queuing.  
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5.3 Differentiation Strategy and Implementation 

5.3.1 Strategy 

The implementation of Traffic Differentiation ( referred to as TRADIF henceforth) mechanism is 

based on two principles: priority based parameter tuning in slotted CSMA/CA and priority 

queuing in transmission buffers. Figure 5.1 presents a pictorial view. 

 

Figure 5.1: Service Differentiation Strategies [20] 

1. Priority based parameter tuning: As already mentioned, the behavior of the slotted 

CSMA/CA is affected by its initialization parameters, changing the values of which 

impacts its performance. The idea is to choose different values of these parameters for 

high and low priority packets so as to increase the probability of success and reduce 

delays for high priority frames. The set of parameters, listed below, and their 

initialization values for both cases are based on the studies carried out in [42] and [20].  

The subscript HP and LP denote High Priority and Low Priority respectively. 

(i) macMinBE: {macMinBEHP , macMinBELP} 

(ii) aMaxBE: {aMaxBEHP , aMaxBELP} 

(iii) CWinit: {CWHP , CWLP} 
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2. Priority Queuing: Priority Queuing is applied to reduce the queuing delays of high 

priority frames. The priority scheduling means that if there are high priority frames in 

transmission queue, they will be picked ahead of low priority frames, irrespective of the 

order of arrival. In FIFO mode, on the other hand, frames are transmitted in the order 

they arrive.  The implementation supports both FIFO and Priority Queuing (PQ) modes, 

and can be specified by the user. 

5.3.2 Implementation 

To add TRADIF to our IEEE802.15.4 stack implementation, modifications have been made 

primarily in two set of modules: queuing and CSMA/CA mechanism. 

Since only two priority levels are assumed, Priority Queuing support has been provided by 

maintaining two transmission queues: High Priority (HP) queue and Low Priority (LP) queue. 

The high priority frames are enqueued in the HP queue, and low priority frames are enqueued in 

the LP queue. In TRADIF mode of operation, every transmission starts with an examination of 

the high priority queue, and if non empty, the frame is selected from it. 

The changes in slotted CSMA/CA implementation involves modifying the following functions 

(described in section 4.5): send_frame_csma(), perform_csma_ca(), init_csma_ca(), 

backoff_fired_check_csma_ca(), and perform_csma_ca_slotted().The modified version supports 

CSMA/CA in both standard as well as TRADIF mode. TRADIF in turn is supported by both 

modes of queuing: FIFO and PQ. 

Only the changes from the implementation of slotted CSMA/CA (section 4.5) are mentioned 

here. In the standard (non-TRADIF) mode, when a frame is to be sent, it is enqueued in the send 

buffer and send_frame_csma() is called to initiate the process of transmission. This is unchanged 

for the FIFO mode of TRADIF. In Priority Queuing mode, when a frame is to be sent, it is 

enqueued in the High Priority (HP) or Low Priority (LP) Queue, depending on the priority of the 

frame. In our implementation, commands frames have been treated as high priority traffic and 

data frames as low priority by default. However this can be easily modified to support 

prioritization of traffic generated at application level (which was done for testing of TRADIF, as 

discussed in next section). 
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The modified (TRADIF) version of the send_frame_csma() function is shown in the flowchart of 

Figure 5.2. To understand the changes, recall from section 4.5 that there are two independent 

threads of executions to complete the execution of CSMA/CA procedure. The thread starting 

from send_frame_csma() and including perform_csma_ca(), init_csma_ca() are responsible for 

the initialization of of the CSMA parameters, including NB, BE and CW. The thread starting 

from backoff_fired(), and including functions csma_check_backoff_fired() and 

perform_csma_ca_slotted() implement backoff countdown, CCA and CCA deference, and 

finally the transmission of the frame. 

 

Figure 5.2:  TRADIF  send_frame_csma() flowchart 
 

The TRADIF version of  send_frame_csma() (Figure 5.2) ensures that the parameters initialized 

by the thread correspond to the priority of the frame to be picked by the 
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backoff_fired_check_csma thread. In FIFO mode, it is the default case since new frames are  

placed at the rear end of the queue and are handled only after the frame under processing at front 

is transmitted and removed from the queue. In Priority Queuing mode, which uses two queues, it 

is achieved with the help of two global variables: performing_csma_ca and pkt_priority. 

Performing_csma_ca is set at the start of the CSMA/CA procedure, i.e., in the 

send_frame_csma() function, indicating that the a CSMA chain is already in execution. Any 

other attempt to initiate the procedure is rejected until the current operation is completed (Figure 

5.2, first step), thus preventing the mid-way re-initialization of parameters. Variable 

performing_csma_ca is reset at the end of perform_csma_ca_slotted(). This check is sufficient 

for FIFO queue models (both TRADIF and non-TRADIF). In multiple queuing (PQ mode), 

however, another check is needed to avoid the rare but nevertheless possible case of a frame 

being enqueued in the HP queue after initialization of the parameters by the first thread 

(corresponding to a lower priority frame) but before the second thread picks the packet from the 

send buffer. Here, parameter consistency is maintained using pkt_priority variable, which is used 

to pass the priority of the packet at the front of the queue to the second thread. This variable is 

set after the initialization of the parameters (Figure 5.3) and used to select the queue in 

perform_csma_ca_slotted() (Figure 5.5). 

 

Figure 5.3:  TRADIF perform_csma_ca() flowchart   
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Perform_csma_ca, shown in Figure 5.3, is similar to the previous version (Figure 4.15) with two 

differences:  addition of pkt_priority variable, just described, and removal of initialization of BE, 

which has been moved to init_csma_ca(). This is done to move all TRADIF parameters to one 

module. Init_csma_ca(),shown in Figure 5.4, has been extended to include the initialization of 

the tradif parameters macMinBE, aMaxBE , CW_init and also BE. 

 

Figure 5.4: TRADIF init_csma_ca() flowchart   
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Figure 5.5: TRADIF perfrom_csma_ca_slotted() flowchart  
 



64 
 

5.4 Performance Evaluation 
To study the effects of parameter tuning and priority queuing, we measured the success 

probability of packet delivery for high priority packets against increasing traffic load in various 

scenarios. 

5.4.1 Experimental setup 

The experimental setup consisted of five devices programmed with TRADIF as described in the 

preceding section.  One of these was programmed as Coordinator and the rest four as end 

devices. The end devices were used to generate traffic, both high and low priority, while the 

Coordinator, apart from synchronizing the devices by generating beacons, was also used to 

manage the experiment by transmitting control information through beacon payload. This 

included the amount and type of traffic to be generated by the end devices and signals to start 

and end the experiment. The traffic generated by the end devices contended for the medium 

using TRADIF version of slotted CSMA/CA algorithm with different values of CSMA 

parameters in different scenarios. The Chipcon packet sniffer was used to read the packets 

transmitted through the medium and  throughput measurements were obtained by parsing the 

sniffer readings. 

 

Figure 5.6: Experimental setup for TRADIF evaluation 
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To start an experiment, the end devices were first reset, set to receive beacons. The Coordinator 

was then set to transmit beacons and control information in payload, specifying traffic loads of 

both kinds to be generated. The end devices, upon receiving the beacon, would set the traffic 

generator alarms (of both high and low priority), with intervals as specified in the beacon 

payload. The alarms generate_hp_trafficAlarm and generate_lp_trafficAlarm have been 

implemented for the purpose of traffic generation and call generate_hp_traffic()  and 

generate_lp_traffic() functions upon firing. These functions generate high priority and low 

priority frames respectively, setting the application payload to indicate priority. Although the 

TRADIF implementation by default treats commands as high priority and data as low priority 

traffic, it was modified for the purpose of testing where data frames were used for both high and 

low priority traffic, with the application payload field defined to determine traffic type. 

The rate of traffic generation was determined by the traffic generator alarms frequency, with a 

unit corresponding to a backoff period. Thus a frequency of 100 for high priority traffic 

generator would mean that a high priority data packet would be generated every 100 backoff 

period.  However, since at higher generation rates these traffic generator tasks could themselves 

be preempted by higher priority tasks, it was not an accurate measure of traffic actually 

generated. The actual traffic generated was thus calculated by inserting traffic generation 

counters in application payload when frames were constructed. The counters are described in 

more detail in the next section. 

5.4.2 Measurements Technique 

To measure output parameters such as throughput, queue overflows and delays, the strategy used 

was to insert counters at various stages of the transmission procedure, starting from the traffic 

generation at application layer to transmission from the physical layer. For example, high 

priority packet counter at application level, hp_app_counter was used to count the number of 

high priority frames generated by an end device from the beginning of the experiment to the 

instant of current frame creation. It was incremented with every call to generate_hp_traffic() and 

inserted into the network payload of the high priority frames.  The following counters were used: 

• lp_app_counter, hp_app_counter: Aplication layer counters for high and low priority 

traffic, incremented with the each high priority frame generated 
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• lp_queued, hp_queued: Counters representing the number of high and low priority 

packets successfully enqueued  

• lp_mac_sent, hp_mac_sent: Counters representing the number of packets transmitted 

after completing the CSMA/CA procedure 

• lp_csma_fail, hp_csma_fail: Counters representing failed CSMA/CA transmissions. 

• lp_last_csma_delay_backoff_period, hp_last_csma_delay_backoff_period: Counters 

representing the CSMA delay in the last transmission of respective priorty classes, in 

terms of the number of backoffs 

 

 

Figure 5.7: Sniffer snapshot showing counters in data frames 
 

These counters were read by parsing the sniffer files (Figure 5.7) and reading the Mac payload of 

each successive frame. From these counters, the number of frames generated of each type, 
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number of frames enqueued, number of frames successfully completing CSMA/CA, and number 

of backoff delays for each frame were calculated. Numbers of successfully transmitted frames of 

each type are given by the number of packets received at the sniffer. Required measurements 

were then obtained using the following formula: 

Application Layer traffic 

Gapp_lp_data = (g_lp_app_packet_nbr * DATA_PACKET_SIZE) / (250000*total_time_sec); 

Gapp_hp_data = (g_hp_app_packet_nbr * DATA_PACKET_SIZE) / (250000*total_time_sec); 

Gapp_data = (g_app_packet_nbr * DATA_PACKET_SIZE) / (250000*total_time_sec);   

Gapp_lp_data denotes low priority traffic generated by the Application Layer; Gapp_hp_data 

denotes high priority traffic generated by the Application Layer and  Gapp_data total traffic 

generated by the Application Layer, all three as fractions of the overall network capacity (250 

kbps). 

Traffic Enqueued 

Gmac_lp_queued = (g_lp_queued * DATA_PACKET_SIZE) / (250000*total_time_sec); 

Gmac_hp_queued = (g_hp_queued * DATA_PACKET_SIZE) / (250000*total_time_sec); 

Gmac_queued    = (g_total_queued * DATA_PACKET_SIZE) / (250000*total_time_sec); 

Gmac_lp_queued, Gmac_hp_queued and Gmac_queued denote low priority, high priority and 

total traffic, respectively, successfully enqueued in send buffers, all as fractions of total network 

capacity.     

Mac Traffic (Undergoing CSMA/CA) 

Gmac_lp_data = (g_lp_mac_sent * DATA_PACKET_SIZE) / (250000*total_time_sec); 

Gmac_hp_data = (g_hp_mac_sent * DATA_PACKET_SIZE) / (250000*total_time_sec); 

Gmac_data = (g_mac_sent * DATA_PACKET_SIZE) /  (250000*total_time_sec);     

Similarly, Gmac_lp_data, Gmac_hp_data and Gmac_data denote low priority, high priority and 

total traffic, undergoing CSMA/CA procedure, all as fractions of total network capacity.     

Total Traffic (Including Beacons) 

Gmac_all= ( (g_mac_sent+g_beacon_nbr) * DATA_PACKET_SIZE)/ 250000*total_time_sec);  
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Successful Transmission  

 S_lp = (g_lp_tx_success * DATA_PACKET_SIZE) / (250000*total_time_sec);                        

S_hp = (g_hp_tx_success * DATA_PACKET_SIZE) / (250000*total_time_sec);    

S = (g_rx_packet_nbr * DATA_PACKET_SIZE) / (250000*total_time_sec);                              

S_lp and S_hp and S denote the amount of low priority, high priority and total traffic successfully 

transmitted (received by the sniffer). 

Application layer traffic probability of success 

Ps_lp_app = S_lp / Gapp_lp_data;             

Ps_hp_app = S_hp / Gapp_hp_data;            

Ps_app = S/Gapp_data;  

Ps_lp_app, Ps_hp_app and Ps_app represent the average probability of success of a low, high 

and any frame generated by the Application layer. 

Mac layer traffic probability of success  

Ps_lp_mac = S_lp / Gmac_lp_data;            

Ps_hp_mac = S_hp / Gmac_hp_data;             

Ps_mac = S/Gmac_data; 

Ps_lp_mac, Ps_hp_mac and Ps_mac represent the average probability of success of a low, high 

and any frame undergoing CSMA/CA. 

5.5 Results and Discussions 

The first set of experiments consist of varying low priority traffic while keeping high priority 

traffic constant, and measuring throughput of the high priority traffic for various differentiation 

scenarios. The values of CSMA parameters used for each of these scenarios are listed in table 

5.1. Each case was examined for FIFO as well as Priority Queuing scheduling policies. 
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The traffic generation was controlled using traffic generator alarms, with one high priority frame 

generated every 60 backoffs and varied from 1000 to 5 backoffs for low priority traffic. 

However, since the alarm frequency alone does not accurately determine the  generated and 

transmitted traffic (due to tasks preemptions and queuing losses), we measured transmission 

success probability against traffic generated at Application layer as well as traffic undergoing 

CSMA/CA at MAC layer (‘Application layer traffic’ – ‘queuing losses’). In the following 

discussions, Application layer traffic is denoted by Gapp and the MAC layer traffic by Gmac. 

Similarly, Gapp_hp and Gapp_lp are used to denote Application layer high priority and low 

priority traffics, and Gmac_hp, Gmac_lp used for MAC layer high and low priority traffic, 

respectively. 

Scenario [macMinBELP, 

macMinBEHP] 

CWLP CWHP 

Sc1 [2,2] 2 2 

Sc2 [2,2] 3 2 

Sc3 [2,0] 2 2 

Sc4 [2,0] 3 2 

    Table 5.1: Test Scenarios 

The four graphs of Figures 5.8 show the success probabilities of Application layer high priority 

frames  with increasing Application traffic (Gapp), for each of the four test scenarios of Table 

5.1,with FIFO Queuing. The graphs of Figures 5.9 show the success probabilities of high priority 

frames undergoing CSMA/CA (Gmac) for each of the four test scenarios, again with FIFO 

Queuing.  The four graphs of Figures 5.10 show the success probabilities of Application layer 

high priority frames against with increasing Gapp, for each of the above test scenarios with 

Priority Queuing, and finally, the the graphs of Figures 5.11 show the success probabilities of 

high priority frames undergoing CSMA/CA in Mac (Gmac), again with Priority Queuing.    
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Figure 5.8:  Success probability of Application traffic: Sc [1-4] with FIFO Queuing 
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Figure 5.9:  Success probability of MAC traffic: Sc [1-4] with FIFO Queuing  
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Figure 5.10:  Success probability of Application traffic: Sc [1-4] with Priority Queuing 
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Figure 5.11:  Success probability of MAC traffic: Sc [1-4] with Priority Queuing 
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Figure 5.12 shows the comparison of the success rates of the high priority Application traffic of 

the four scenarios of  Figure 5.8. Queuing mode in all four cases is FIFO. The contention 

windows size for high priority frames is kept 2 (standard value) in all cases, while it is increased 

to 3 for low priority frames in Sc2 and Sc4. On the other hand, the value of macMinBE is kept 

constant (2, standard value) for low priority traffic in all cases, whereas it is set to 0 for high 

priority traffic in Sc3 and Sc4. 

 

 

Figure 5.12: Success Probability (Gapp): Comparing four scenarios with FIFO Queuing  
 

From the graphs it can be observed that all three scenarios of parameter tuning (Sc [2-4]) result 

in higher success rates compared to the standard case (Sc1). The order of increasing success 

probabilities is P(Sc4)>P(Sc2)>P(Sc3)>P(Sc1). Sc1, which is the standard case, has the lowest 

success probability. Sc3, in which macMinBEHP is decreased to 0, results in improved success 

rates, but it is still very close to the standard case (change of 0-5%). This is so because setting 

macMinBEHP lower than macMinBELP means lower backoff delays for high priority traffic (refer 

to slotted CSMA/CA algorithm, Figure 2.7), but the number of backoffs and contention window 

size, which are directly related to the contention success probability, are unchanged. On the other 

hand, setting CWLP greater than CWHP means that high priority traffic need the channel to remain 

idle for shorter time before transmitting, which means higher probability of success in every 

sensing attempt. The comparatively higher success rates in Sc2 and Sc4 (improvement of 20-
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25%) reflect this, showing greater improvement in performance by setting CWLP > CWHP, 

compared to by changing macMinBEHP. 

Figure 5.13 compares the success probabilities of the four cases against Gmac. The queuing 

mode in this case is FIFO. The difference from the previous case (Figure 5.12) is that while there 

the packets lost because of queue overflow were counted among failed deliveries, here those are 

excluded from the calculations, and the failed deliveries are of channel contention. Thus it is a 

more accurate reflection on the effects of parameter tuning on CSMA/CA performance. 

However, the results are very close to those in Figure 5.12 because queuing losses were 

negligible (less than 1%). The order of success probabilities, as in the previous case, is 

P(Sc4)>P(Sc2)>P(Sc3)>P(Sc1). This confirms the greater dependency of the contention 

window size on the performance, compared to the value macMinBE. 

 

Figure 5.13: Success Probability (Gmac): Comparing four scenarios with FIFO Queuing 

Figure 5.14 compares the success probabilities of high priority Application layer traffic for the 

four cases against in Priority Queuing mode. One of the noticeable changes from the FIFO cases 

is the fall of success probability of Sc3. This is so because with priority queuing, high and low 

priority frames go to separate queues and the high priority frames are picked first irrespective of 

the order of arrival or the state of the low priority queue. As such, the effect of changing 
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0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

Ps
(h
p_

m
ac
)

Gmac

Sucess Probability : S/Gmac (FIFO)

Sc1(fifo)

Sc2(fifo)

Sc3(fifo)

Sc4 (fifo)



74 
 

any difference on contention success. Ideally, Sc1 and Sc3 should have the same success rates, 

which is the case at higher traffic loads. 

 

 

Figure 5.14: Success Probability (Gapp): Comparing four scenarios with Priority Queuing 
 

Sc2 and Sc4 again have better success rates since setting having CWHP lesser than CWLP means 

that high priority traffic need the channel to remain idle for shorter time before transmitting and 

hence has more chances of success. In this case again, changing CWLP to 3 improves the success 

rate of high probability packet by 15 to 20%. 

Figure 5.15 shows the comparison of the success probabilities of high priority Mac layer traffic 

in priority queuing mode. Sc2 and Sc4 again have an improvement of 15-20% over Sc1 and Sc3 

till the traffic reaches around 55-60%. However, as can be seen from the graph, the traffic in Sc2 

and Sc4, in this case, do not go beyond 60%.  This is so because increased low priority 

contention window size (CWLP) results in increased delays in the transmission of low priority 

frames which in turn means that the low priority frames are removed from the low priority queue 

at a lower rate. Beyond this rate, the frames generated by the Application layer end up as queue 

overflow, without any increase in total Mac layer traffic.  
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Figure 5.15: Success Probability (Gmac): Comparing four scenarios with Priority Queuing 

 
To separately evaluate the effect of priority queuing mechanism, a single sender was used to 

generate equal amount of high and low priority frames.  The queue size for both high and low 

priority queues were set to be 15. The Application layer traffic generation rate was increased at 

equal rate. The number of packets enqueued of both types were calculated by parsing the output 

file of the sniffer used to receive packets. Figure 5.16 shows the packets enqueued against the 

packets generated by the application of both high and low priority. It can be seen that beyond 

20% of channel capacity, while the low priority frames are dropped due to queue overflow, the  

 

Figure 5.16: Comparing queuing success in Priority Queuing mode 
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high priority frames are unaffected. This indicates that at high traffic load, priority queuing has 

an important role in ensuring the precedence of high priority frames. 
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CHAPTER 6 
CONCLUSION AND FUTURE WORK 
 

6.1 Conclusions 
Increased uses of WSNs in time-critical applications such as industrial automation and process 

control have led to the demands of real-time support from WSN communication protocols. The 

IEEE802.15.4/ZigBee protocol set, by virtue of their dynamically adjustable duty-cycles and 

support for real-time bandwidth allocation using the GTS (Guaranteed Time Slot) mechanism, 

show excellent potential to meet such demands. However, previous attempts to build the stack 

over TinyOS (the most popular OS for sensor nodes) could not produce predictable temporal 

behavior of tasks because of the lack of real-time support from the kernel. To overcome these 

limitations, the protocol stack was implemented over ERIKA real-time Operating System. The 

implemented functionalities include: Data Transmission (direct and indirect) in Contention 

Access Period (CAP) and Contention Free period (CFP); Transmission with acknowledgement 

requests (and retransmission for acknowledgement failure); Association mechanism, GTS 

Allocation and Deallocation, Address Assignment mechanisms, ZigBee Network formation and 

Tree Routing.  All of the implemented functionalities were validated using IEEE802.15.4 

compliant packet sniffers. Additionally, Time Division Beacon Scheduling mechanism [19] was 

added to support Cluster-tree formation in synchronized mode. 

While the stack implementation provides support for guaranteed bandwidth allocations using 

GTS mechanism, its scope is limited to Contention Free Period and also to a limited number of 

devices. To extend the QoS support to Contention Free Period and an unlimited number of 

devices, priority based service differentiation was introduced in the slotted CSMA/CA (the 

channel access algorithm used in CAP). This included addition of priority queuing to lower 

queuing delays of high priority frames as well as priority based parameter tuning to favour  the 

high priority frames in channel contention. A number of test scenarios with different parameter 

and queuing combinations were studied and the results confirmed the achievement of a greater 

success rate for high priority frames. 
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6.2 Suggestions for Future Work 
The Zigbee specifications restrict multi-hop networking in the beacon-enabled mode to star-

based networks. Additional mechanisms are thus needed to support operational cluster tree 

formation in beacon enabled mode. In this direction, Time Division Beacon Scheduling 

mechanism [19] has been implemented which enables cluster tree formation in beacon-enabled 

mode, but the current operation is limited to unidirectional communication. The next step is the 

splitting of transmission buffers into upstream and downstream buffers to enabling bi-directional 

communication in Cluster-tree networks. This will allow large scale distributed operation of 

nodes in synchronized mode. In traffic differentiation evaluation, practical difficulties were 

encountered in high rate traffic generation because of the small size of the test bed. An 

evaluation on a larger test bed is desirable. A larger test bed will also enable the evaluation of the 

mechanism for hidden node scenarios [20]. 
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